Review of Electromagnetic-Based Crack Sensors for Metallic Materials (Recent Research and Future Perspectives)
نویسندگان
چکیده
Evaluation and non-destructive identification of stress-induced cracks or failures in metals is a vital problem in many sensitive environments, including transportation (steel railway tracks, bridges, car wheels, etc.), power plants (steam generator tubing, etc.) and aerospace transportation (landing gear, aircraft fuselages, etc.). There are many traditional non-destructive detection and evaluation techniques; recently, near-field millimeter waves and microwave methods have shown incredible promise for augmenting currently available non-destructive techniques. This article serves as a review of developments made until now on this topic; it provides an overview of microwave scanning techniques for crack detection. This article summarizes the abilities of these methods to identify and evaluate cracks (including describing their different physical properties). These methods include applying filters based on dual-behavior resonators (DBRs), using complementary split-ring resonators (CSRRs) for the perturbation of electric fields, using waveguide probe-loaded CSRRs and using a substrate-integrated-waveguide (SIW) cavity for the detection of sub-millimeter surface and subsurface cracks.
منابع مشابه
Detection of Surface and Subsurface Cracks in Metallic and Non-Metallic Materials Using a Complementary Split-Ring Resonator
Available microwave techniques for crack detection have some challenges, such as design complexity and working at a high frequency. These challenges make the sensing apparatus design complex and relatively very expensive. This paper presents a simple method for surface and subsurface crack detection in metallic and non-metallic materials based on complementary split-ring resonators (CSRRs). A C...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملModification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review
The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...
متن کاملReducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection
Nondestructive Testing (NDT) assessment of materials' health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave ...
متن کامل